We outline a novel approach for near real-time video registration based on sensor model parameter adjustments and the application of a Kalman filter. The goal of our precision video registration (PVR) development is to register video with a reference image to provide accurate 3D geolocations. Our sensor-based 3D treatment is unique since most registration approaches employ only simple image-to-image mappings, such as affine transformations. In our approach, we explicitly model the projections between the 3D world and 2D images and perform registration in 3D with greater accuracy and fidelity. PVR performance results show significant accuracy improvement over unregistered frame geolocation, and the autonomously generated video mosaics appear smooth and seamless.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Autonomous video registration using sensor model parameter adjustments


    Beteiligte:
    Cannata, R.W. (Autor:in) / Shah, M. (Autor:in) / Blask, S.G. (Autor:in) / Van Workum, J.A. (Autor:in)


    Erscheinungsdatum :

    01.01.2000


    Format / Umfang :

    1131273 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Autonomous Video Registration Using Sensor Model Parameter Adjustments

    Cannata, R. / Shah, M. / Blask, S. et al. | British Library Conference Proceedings | 2000



    Airborne video registration and traffic-flow parameter estimation

    Shastry, A.C. / Schowengerdt, R.A. | IEEE | 2005


    Experimental Robot Model Adjustments Based on Force-Torque Sensor Information

    Martínez de la Casa Díaz, Santiago / García Haro, Juan Miguel / Jardón Huete, Alberto et al. | BASE | 2018

    Freier Zugriff

    SYSTEMS AND METHODS FOR AUTOMATED HEADLAMP ADJUSTMENTS FOR AUTONOMOUS VEHICLES

    BELLARE NIRANJAN SHENOY / HAN XIAOLING | Europäisches Patentamt | 2023

    Freier Zugriff