A new algorithm for task dependent selection of wavelet packet trees for signal classification is suggested. The algorithm is based on a class separability measure rather than energy or entropy. At each level the class separabilities obtained from a parent node and its children are computed and compared. The decomposition of the node (or subband) is performed if it provides larger separability. The suggested algorithm is tested for texture classification. The method can also be used with other tree structured local basis e.g. local trigonometric basis functions. Also it can be applied to detection, classification or segmentation of different l-D and 2-D signals.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Separability based tree structured local basis selection for texture classification


    Beteiligte:
    Etemad, K. (Autor:in) / Chellappa, R. (Autor:in)


    Erscheinungsdatum :

    01.01.1994


    Format / Umfang :

    505035 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Separability Based Tree Structured Local Basis Selection for Texture Classification

    Etemad, K. / Chellappa, R. / IEEE; Signal Processing Society | British Library Conference Proceedings | 1994


    CLASSIFICATION OF TREE SPECIES ON THE BASIS OF TREE BARK TEXTURE

    Ganschow, Lene / Thiele, Tom / Deckers, Niklas et al. | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2019

    Freier Zugriff

    Signal denoising in tree-structured Haar basis

    Pogossova, E. / Egiazarian, K. / Astola, J. | IEEE | 2003


    Signal De-Noising in Tree-Structured Haar Basis

    Pogossova, E. / Egiazarian, K. / Astola, J. et al. | British Library Conference Proceedings | 2003