Tracking articulated objects in image sequences remains a challenging problem, particularly in terms of the ability to localize the individual parts of an object given self-occlusions and changes in viewpoint. In this paper we propose a two-dimensional spatio-temporal modeling approach that handles both self-occlusions and changes in viewpoint. We use a Bayesian framework to combine pictorial structure spatial models with hidden Markov temporal models. Inference for these combined models can be performed using dynamic programming and sampling methods. We demonstrate the approach for the problem of tracking a walking person, using silhouette data taken from a single camera viewpoint. Walking provides both strong spatial (kinematic) and temporal (dynamic) constraints, enabling the method to track limb positions in spite of simultaneous self-occlusion and viewpoint change.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A unified spatio-temporal articulated model for tracking


    Beteiligte:


    Erscheinungsdatum :

    01.01.2004


    Format / Umfang :

    575484 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Unified Spatio-Temporal Articulated Model for Tracking

    Lan, X. / Huttenlocher, D. / IEEE Computer Society | British Library Conference Proceedings | 2004


    A Unified Spatio-Temporal Description Model of Environment for Intelligent Vehicles

    Wang, Sijia / Jiang, Kun / Xie, Shichao et al. | Springer Verlag | 2020


    A Unified Spatio-Temporal Description Model of Environment for Intelligent Vehicles

    Wang, Sijia / Jiang, Kun / Xie, Shichao et al. | TIBKAT | 2021


    A Unified Spatio-Temporal Description Model of Environment for Intelligent Vehicles

    Wang, Sijia / Jiang, Kun / Xie, Shichao et al. | British Library Conference Proceedings | 2021


    A Unified Spatio-Temporal Model for Short-Term Traffic Flow Prediction

    Duan, Peibo / Mao, Guoqiang / Liang, Weifa et al. | IEEE | 2019