Rail transportation is the backbone of modern transportation. Accurate railway passenger flow forecasting can be applied to support transportation system management such as operation plan and route selection design. This paper proposes a hybrid linear + nonlinear time series analysis model, which uses the panel vector autoregression (PVAR) and neural network (NN) hybrid PVAR-NN prediction methods to predict passenger flow in the railway system. The proposed model combines the pros of both linear and non-linear model with easy-to-interpretation for stakeholders. The empirical analysis results further indicate that the proposed hybrid PVAR-NN approach performs with improved accuracy in forecasting the railway passenger flow.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Railway Passenger Flow Forecast Based on Hybrid PVAR-NN Model


    Beteiligte:
    Zhu, Ruiqi (Autor:in) / Zhou, Huiyu (Autor:in)


    Erscheinungsdatum :

    01.09.2020


    Format / Umfang :

    438037 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Fuzzy Temporal Logic Based Railway Passenger Flow Forecast Model

    Dou, Fei / Jia, Limin / Wang, Li et al. | Tema Archiv | 2014


    Fuzzy Temporal Logic Based Railway Passenger Flow Forecast Model

    Fei Dou / Limin Jia / Li Wang et al. | DOAJ | 2014

    Freier Zugriff