Accidents have become a widespread societal problem on a global scale as the automotive industry has progressed. In contrast to the long-term safe driving environment, the likelihood of encountering safety-critical scenarios leading to traffic accidents while driving is minimal. However, these rare events are crucial for enhancing human or autonomous driving skills. Therefore, evaluating and refining the decision-making processes of human or autonomous vehicles requires scalable generation of long-tail traffic scenarios. These scenarios should be both realistic and challenging, but still partially solvable. In this paper, we propose an automated method for generating challenging scenarios. Our primary objective is to use a safety-critical scenario generation model based on a Conditional Variational Autoencoder (VAE) to increase the variety of scenarios by diversifying latent flows on the pre-trained trajectory representation model. The results show that our method can produce plausible scenarios, surpassing the baseline by over 10% in collision metric for scenario generation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Diversifying Latent Flows for Safety-Critical Scenarios Generation


    Beteiligte:
    Gao, Dingcheng (Autor:in) / Qin, Yanjun (Autor:in) / Tao, Xiaoming (Autor:in) / LU, Jianhua (Autor:in)


    Erscheinungsdatum :

    24.09.2024


    Format / Umfang :

    850503 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Diversifying the SSPC

    Moeller, H. / European Space Agency | British Library Conference Proceedings | 1998


    Diversifying the SSPC

    Moeller, H. | British Library Online Contents | 1998


    Suicidal Pedestrian: Generation of Safety-Critical Scenarios for Autonomous Vehicles

    Yang, Yuhang / Kujanpaa, Kalle / Babadi, Amin et al. | ArXiv | 2023

    Freier Zugriff

    Suicidal Pedestrian: Generation of Safety-Critical Scenarios for Autonomous Vehicles

    Yang, Yuhang / Kujanpaa, Kalle / Babadi, I Amin et al. | IEEE | 2023


    Adversarial Generation of Safety-Critical Lane-Change Scenarios for Autonomous Vehicles

    He, Zimin / Zhang, Jiawei / Yao, Danya et al. | IEEE | 2023