In this paper, we present a deep hybrid model to detect abnormal flights. Deep hybrid models for anomaly detection use deep neural networks mainly autoencoder as feature extractors, the features learned within the hidden representations of autoencoder are then input to cluster algorithm to detect abnormal flights. The model can detect flight anomalies and associated risks without requiring predefined criteria or domain knowledge. In this paper, 2018 annual flight data of Daocheng Yading airport was taken as the experimental data which contains 981 flights. Our model performed well and 91 abnormal flights were detected.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Flight Anomaly Detection Based on Deep Hybrid Model


    Beteiligte:
    Wang, Qixin (Autor:in) / Qin, Kun (Autor:in) / Lu, Binbin (Autor:in)


    Erscheinungsdatum :

    14.10.2020


    Format / Umfang :

    413030 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multiclass Anomaly Detection in Flight Data Using Semi-Supervised Explainable Deep Learning Model

    Memarzadeh, Milad / Matthews, Bryan / Templin, Thomas | AIAA | 2022

    Freier Zugriff

    Multi-Class Anomaly Detection in Flight Data Using Semi-Supervised Explainable Deep Learning Model

    Memarzadeh, Milad / Matthews, Bryan / Templin, Thomas | AIAA | 2021


    MULTI-CLASS ANOMALY DETECTION IN FLIGHT DATA USING SEMI-SUPERVISED EXPLAINABLE DEEP LEARNING MODEL

    Memarzadeh, Milad / Matthews, Bryan / Templin, Thomas | TIBKAT | 2021


    Active Learning in Flight Anomaly Detection

    Mural, Prashant C. / GN, Rathna / Bhola, Virat | AIAA | 2024