This paper considers the use of deep learning models to enhance optimization algorithms for transit network design. Transit network design is the problem of determining routes for transit vehicles that minimize travel time and operating costs, while achieving full service coverage. State-of-the-art meta-heuristic search algorithms give good results on this problem, but can be very time-consuming. In contrast, neural networks can learn sub-optimal but fast-to-compute heuristics based on large amounts of data. Combining these approaches, we develop a fast graph neural network model for transit planning, and use it to initialize state-of-the-art search algorithms. We show that this combination can improve the results of these algorithms on a variety of metrics by up to 17%, without increasing their run time; or they can match the quality of the original algorithms while reducing the computing time by up to a factor of 50.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Augmenting Transit Network Design Algorithms with Deep Learning


    Beteiligte:
    Holliday, Andrew (Autor:in) / Dudek, Gregory (Autor:in)


    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    275877 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Augmenting Transit Trip Characterization and Travel Behavior Comprehension

    Chu, Ka Kee Alfred / Chapleau, Robert | Transportation Research Record | 2010


    Layered augmenting path algorithms

    Tardos, Éva / Tovey, Craig A. / Trick, Michael A. | TIBKAT | 1985


    Augmenting interpretation of vaginoscopy observations in cycling bitches with deep learning model

    K. Rajan, Bindhu / G., Venugopal / Harshan M., Hiron et al. | Springer Verlag | 2024

    Freier Zugriff


    Applying and Augmenting Deep Reinforcement Learning in Serious Games through Interaction

    Dobrovsky, Aline / Borghoff, Uwe M. / Hofmann, Marko | BASE | 2017

    Freier Zugriff