Accurate State of Charge (SOC) estimation is paramount for the efficient and safe management of battery systems. Traditional SOC estimation techniques often face challenges due to the nonlinear and dynamic behavior of batteries and errors in the assumptions about initial battery states. Machine learning, on the other hand, offers an opportunity to build black box SOC estimation models that do not require exact knowledge about the behavior of the battery and initial states. This paper proposes a SOC estimation approach utilizing Separable Temporal Convolutional Networks (STCNs). We evaluate our model using the Panasonic 18650PF Li-ion Battery dataset. STCNs leverage the causal and temporal nature of battery data while maintaining computational efficiency. Our model estimates SOC based on a segment of consecutive time steps, providing an approach independent of a battery's starting point.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Battery State of Charge Estimation with Separable Temporal Convolutional Networks


    Beteiligte:


    Erscheinungsdatum :

    31.07.2024


    Format / Umfang :

    2439567 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    BATTERY STATE-OF-CHARGE ESTIMATION APPARATUS AND STATE-OF-CHARGE ESTIMATION METHOD

    TANI HIDEAKI / WACHI SATOSHI / SAITO HIROYUKI et al. | Europäisches Patentamt | 2017

    Freier Zugriff

    Separable Convolutional LSTMs for Faster Video Segmentation

    Pfeuffer, Andreas / Dietmayer, Klaus | IEEE | 2019


    Battery cell state of charge estimation

    LEE TAE-KYUNG | Europäisches Patentamt | 2016

    Freier Zugriff

    BATTERY ASSEMBLY STATE-OF-CHARGE ESTIMATION

    WANG YUE-YUN / WAMPLER CHARLES W / CHANG CHEN-FANG | Europäisches Patentamt | 2025

    Freier Zugriff