In recent years Autonomous Drone Racing has become a significant challenge due to the problems involved in developing an algorithm for autonomous navigation. One of the major problems is the estimation of the camera pose; several approaches can be founded to achieve the estimation of the camera pose. In particular, it is possible to estimates the position based on specific object detection. However, object detection at the same time of navigation entails the problem of a blind spot area when the camera is closest to the object. We propose a methodology that overcomes the blind spot in autonomous navigation based on CNN gate detection to perform pose estimation with a stochastic algorithm for distance estimation. We achieve over 95 % in gate detection and a mean error of around 35 cm in 1D pose estimation into the blind spot zone.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Overcoming the Blind Spot in CNN-based Gate Detection for Autonomous Drone Racing




    Erscheinungsdatum :

    01.11.2019


    Format / Umfang :

    4811784 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Temporal CNN-based Approach for Autonomous Drone Racing

    Rojas-Perez, L. Oyuki / Martinez-Carranza, J. | IEEE | 2019


    Drone Racing Frame

    RHEE JUN WHI | Europäisches Patentamt | 2020

    Freier Zugriff

    Human Vs. Autonomous Agents: Drone racing and Obstacle Avoidance

    Lochtefeld, Joelle / Schlager, Stephen / Bryan, Samuel et al. | IEEE | 2022


    DRONE RACING GAME SYSTEM

    OM SOUNG YOUNG / PARK JI HYUN / SEO YEON GON | Europäisches Patentamt | 2018

    Freier Zugriff

    Fast-Racing: An Open-source Strong Baseline for SE(3) Planning in Autonomous Drone Racing

    Han, Zhichao / Wang, Zhepei / Pan, Neng et al. | ArXiv | 2021

    Freier Zugriff