In this paper, we present a new and efficient algorithm for image interpolation. To render high-resolution image from low-resolution image, classical interpolation techniques estimate the missing pixels from the surrounding pixels based on pixel-by-pixel basis. In contrast, this paper proposes an algorithm which is centered on Tikhonov regularization. The regularized solution is derived using the framework of damped least square optimization. Kronecker product and singular value decomposition are employed to reduce the computational cost of the algorithm. Experimental results show that the method produces better interpolation results when compared to other conventional techniques.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Regularized interpolation using Kronecker product for still images


    Beteiligte:
    Li Chen, (Autor:in) / Kim-Hui Yap, (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    431263 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Regularized Interpolation using Kronecker Product for Still Images

    Chen, L. / Yap, K.-H. | British Library Conference Proceedings | 2005




    Kronecker-Factored Optimal Curvature

    Schnaus, Dominik / Lee, Jongseok / Triebel, Rudolph | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2021

    Freier Zugriff

    Kronecker Product Formulation for System Identification of Discrete Convolution Filters

    Mazurek, Lee / Harris, Michael / Christenson, Richard | British Library Conference Proceedings | 2017