The theory and the applications of the marginalized particle filter (MPF) have attracted much research attention during the last decade. However, the existing MPF framework does not cover dependent process and measurement noises. This dependency is perhaps more common in practice than is acknowledged in the literature. In this article, we propose a general framework for MPF, covering both cases of dependent and independent noises. As a consequence, MPF with independent noises is a special case of this general framework. The treatment of dependency always provides ‘extra’ information to the state estimation tasks. This beneficial effect is shown through a numerical example.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Marginalized particle filter for dependent Gaussian noise processes


    Beteiligte:


    Erscheinungsdatum :

    01.03.2012


    Format / Umfang :

    670140 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    The marginalized particle filter in practice

    Schon, T.B. / Karlsson, R. / Gustafsson, F. | IEEE | 2006



    The marginalized particle filter for automotive tracking applications

    Eidehall, A. / Schon, T.B. / Gustafsson, F. | IEEE | 2005


    The Marginalized Particle Filter for Automotive Tracking Applications

    Eidehall, A. / Schon, T. / Gustafsson, F. et al. | British Library Conference Proceedings | 2005


    Tire Radii Estimation Using a Marginalized Particle Filter

    Lundquist, Christian / Karlsson, Rickard / Ozkan, Emre et al. | IEEE | 2014