To implement the V2X systems, reliable channel estimation is a major critical challenge due to the rapid time-varying characteristic of the vehicular channels. In this recent result paper, we propose a denoising autoencoder (DAE) based channel estimation scheme. The proposed scheme has a simple neural network structure and significantly improves the channel estimation accuracy by training the auto encoder such that it can remove the noise and distortions generated during the data pilot aided channel estimation process. Simulation results verify that the proposed DAE outperforms the conventional deep learning based channel estimation schemes.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Poster: A Simple Deep Learning Based V2X Channel Estimation Scheme Using Denoising Autoencoder


    Beteiligte:
    Oh, Kang-Hyun (Autor:in) / Kim, Chang Hyun (Autor:in) / Lim, Sungmook (Autor:in) / Song, Changick (Autor:in)


    Erscheinungsdatum :

    29.05.2024


    Format / Umfang :

    322908 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    DANAE: A denoising autoencoder for underwater attitude estimation

    Russo Paolo / Di Ciaccio Fabiana / Troisi Salvatore | BASE | 2020

    Freier Zugriff

    Semisupervised fault diagnosis of aeroengine based on denoising autoencoder and deep belief network

    Lv, Defeng / Wang, Huawei / Che, Changchang | Emerald Group Publishing | 2022


    Autoencoder with Channel Estimation for Marine Communications

    Lin, Bin / Duan, Jianli / Han, Mengqi et al. | Springer Verlag | 2022


    Overview of traditional denoising and deep learning-based denoising

    Wen, Jian / Shao, Jianfei / Shao, Jianlong et al. | British Library Conference Proceedings | 2022