Lane detection is still a problem to be solved due to the complex and dynamic autonomous driving environment. In this work, we propose a robust lane detection model via vertical spatial convolutions. In the encoder phase, a pair of convolutions is used to increase the number of channels of feature maps, and reduce the network parameters. Then, a combination module is utilized to further compress the redundant spatial information into a valid and compact representation. Finally, a group of vertical spatial convolution blocks and efficient residual modules is employed to help the proposed model obtain more effective global context information of lane lines, which are used by the subsequent network layers to detect lane lines more accurately in some challenging scenarios. Furthermore, we verify the performance and robustness of the proposed model on two popular and diverse lane detection benchmarks: TuSimple and CULane. A large number of experimental results show that our model outperforms the state-of-the-art algorithms.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Robust Lane Detection Model via Vertical Spatial Convolutions


    Beteiligte:
    Zhang, Jiyong (Autor:in) / Yan, Fei (Autor:in) / Liu, Wenbo (Autor:in) / Deng, Tao (Autor:in)


    Erscheinungsdatum :

    19.09.2021


    Format / Umfang :

    921374 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Robust Spatiotemporal Lane Detection Model

    Zhang, Jiyong / Wang, Bo / Naeem, Hamad et al. | Transportation Research Record | 2024


    A Study on Different Types of Convolutions in Deep Learning in the Area of Lane Detection

    Rajalakshmi, T. S. / Senthilnathan, R. | Springer Verlag | 2022


    ROBUST LANE DETECTION USING MULTIPLE FEATURES

    Gupta, Tejus / Sikchi, Harshit S. / Charkravarty, Debashish | British Library Conference Proceedings | 2018


    Robust Lane Detection Using Multiple Features

    Gupta, Tejus / Sikchi, Harshit S. / Charkravarty, Debashish | IEEE | 2018


    Robust Multi-Lane Detection and Tracking in Temporal-Spatial Based on Particle Filtering

    Chen, Sihan / Huang, Libo / Bai, Jie | British Library Conference Proceedings | 2019