HMMs are often used for gesture recognition because of the robustness. However, the computational cost and accuracy of recognition are important for real applications such as gesture recognition, speech recognition or virtual reality. In this paper, we propose methods for performance improvement of gesture recognition using HMMs. For the computational cost, we use KL transform to compress the input information and propose a recursive calculation method for the HMMs' probabilities. For the accuracy of recognition, we use an automaton layered up on HMMs to deal with context information of gestures. We also show experimental results to make the efficiency of our methods clear.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-time context-based gesture recognition using HMM and automaton


    Beteiligte:
    Iwai, Y. (Autor:in) / Shimizu, H. (Autor:in) / Yachida, M. (Autor:in)


    Erscheinungsdatum :

    01.01.1999


    Format / Umfang :

    967356 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Real-time gesture recognition system and application

    Wah Ng, C. / Ranganath, S. | British Library Online Contents | 2002


    3-D Real-Time Gesture Recognition Using Proximity Spaces

    Huber, E. / IEEE | British Library Conference Proceedings | 1996


    Real-Time Dynamic Gesture Recognition based on Boundary-Constraint Dynamic Time Warping

    Cheng, Chunling / Liu, Yangjunwu / Yang, Jian et al. | IEEE | 2019


    A Real-Time Applicable Dynamic Hand Gesture Recognition Framework

    Kopinski, Thomas / Gepperth, Alexander / Handmann, Uwe | IEEE | 2015