We introduce a new classification algorithm based on the concept of symmetric maximized minimal distance in subspace (SMMS). Given the training data of authentic samples and imposter samples in the feature space, SMMS tries to identify a subspace in which all the authentic samples are close to each other and all the imposter samples are far away from the authentic samples. The optimality of the subspace is determined by maximizing the minimal distance between the authentic samples and the imposter samples in the subspace. We present a procedure to achieve such optimality and to identify the decision boundary. The verification procedure is simple since we only need to project the test sample to the subspace and compare it against the decision boundary. Using face authentication as an example, we show that the proposed algorithm outperforms several other algorithms based on support vector machines (SVM).


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Classification based on symmetric maximized minimal distance in subspace (SMMS)


    Beteiligte:
    Wende Zhang, (Autor:in) / Tsuhan Chen, (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    419758 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Classification Based on Symmetric Maximized Minimal Distance in Subspace (SMMS)

    Zhang, W. / Chen, T. / IEEE | British Library Conference Proceedings | 2003


    SMMS: Oberflächensedimentologie (1960 bis 2020)

    Bundesanstalt für Wasserbau | Mobilithek

    Freier Zugriff

    SMMS: Bathymetrie (WMS)

    Bundesanstalt für Wasserbau | Mobilithek

    Freier Zugriff

    SMMS: Bathymetrie (1960 bis 2020)

    Bundesanstalt für Wasserbau | Mobilithek

    Freier Zugriff

    SMMS: Stratigraphie (1990, 2000, 2010, 2020)

    Bundesanstalt für Wasserbau | Mobilithek

    Freier Zugriff