In low-cost wireless sensor networks, the communication bandwidth between sensors may be variable due to power constraints on the sensors. Considering that quantization is an effective method to save communication bandwidth, a novel distributed adaptive quantization state estimation algorithm with variable bandwidth is proposed, where the quantization steps are time varying. Based on the minimum mean squared error criterion and diffusion strategy, the optimal local gain and neighborhood gain are designed to utilize quantized information for fusion estimation. These gains can be adjusted adaptively through local information fusion. Moreover, we also analyze the mean and mean-square performance of the proposed algorithm and find that the covariance is bounded under variable bandwidth. Finally, the effectiveness of the proposed algorithm is verified via numerical simulation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Diffusion Distributed Quantized State Estimation With Variable Bandwidth


    Beteiligte:
    Liu, Jingzhi (Autor:in) / Chen, Feng (Autor:in) / Feng, Minyu (Autor:in) / Wang, Shiyuan (Autor:in)


    Erscheinungsdatum :

    01.02.2022


    Format / Umfang :

    1962117 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Hybrid Quantized Signal Detection With a Bandwidth-Constrained Distributed Radar System

    Yang, Shixing / Lai, Yangming / Jakobsson, Andreas et al. | IEEE | 2023


    State Estimation with Coarsely Quantized, High-Data-Rate Measurements

    Curry, Renwick E. / Mirchandani, Pitu / Price, Charles F. | IEEE | 1975



    Vertical State Estimation for Aircraft Collision Avoidance with Quantized Measurements

    Asmar, Dylan M. / Kochenderfer, Mykel J. / Chryssanthacopoulos, James P. | AIAA | 2013