We address the problem of unsupervised semantic segmentation of outdoor LiDAR point clouds in diverse traffic scenarios. The key idea is to leverage the spatiotemporal nature of a dynamic point cloud sequence and introduce drastically stronger augmentation by establishing spatiotemporal correspondences across multiple frames. We dovetail clustering and pseudo-label learning in this work. Essentially, we alternate between clustering points into semantic groups and optimizing models using point-wise pseudo-spatiotemporal labels with a simple learning objective. Therefore, our method can learn discriminative features in an unsupervised learning fashion. We show promising segmentation performance on Semantic-KITTI,SemanticPOSS, and FLORIDA benchmark datasets covering scenarios in autonomous vehicle and intersection infrastructure, which is competitive when compared against many existing fully supervised learning methods. This general framework can lead to a unified representation learning approach for LiDAR point clouds incorporating domain knowledge.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Spatiotemporal Correspondence Approach to Unsupervised LiDAR Segmentation with Traffic Applications


    Beteiligte:
    Li, Xiao (Autor:in) / He, Pan (Autor:in) / Wu, Aotian (Autor:in) / Ranka, Sanjay (Autor:in) / Rangarajan, Anand (Autor:in)


    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    3830230 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Unsupervised multiphase segmentation: A recursive approach

    Ni, K. / Hong, B. W. / Soatto, S. et al. | British Library Online Contents | 2009



    Spatiotemporal Object Database Approach to Dynamic Segmentation

    Huang, Bo / Yao, Li | Transportation Research Record | 2003



    Unsupervised Alignment of Traffic Elements for Domain Adaptive Semantic Segmentation

    Gao, Yuan / Li, Yaochen / Zhang, Tengwen et al. | IEEE | 2024