In this paper, the problem of fast learning algorithm for multi-layered feedforward neural network (MLFNN) is discussed. A new fast backpropagation (FB-P) learning algorithm is proposed, By the analysis of FB-P learning algorithm, a modified FB-P (MFB-P) learning algorithm is presented. Simulations are run with the problem of XOR for B-P, FB-P and MFB-P, and the corresponding results indicate that MFB-P or FB-P converges much more quickly than B-P and MFB-P has much better generalization than FB-P or B-P.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fast learning algorithms for multi-layered feedforward neural network


    Beteiligte:
    Min Liang (Autor:in) / Shi-Xi Wang (Autor:in) / Yong-Hong Luo (Autor:in)


    Erscheinungsdatum :

    01.01.1994


    Format / Umfang :

    296138 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Fast Learning Algorithms for Multi-Layered Feedforward Neural Network

    Liang, M. / Luo, Y.-H. / Wang, S.-X. et al. | British Library Conference Proceedings | 1994



    Reinforcement Learning Using Feedforward Neural Network with Memory Mechanism

    Ozawa, S. / Shiraga, N. | British Library Online Contents | 2003


    Incremental Learning Algorithm for Feedforward Neural Network with Long-Term Memory

    Kobayashi, M. / Ozawa, S. / Abe, S. | British Library Online Contents | 2002


    Feedforward Neural-Network Controller for Ship Steering

    Balasuriya, B. A. A. P. / Hoole, P. R. P. / International Federation of Automatic Control | British Library Conference Proceedings | 1995