Traffic congestion at arterial intersections and freeway bottleneck degrades the air quality and threatens the public health. Conventionally, air pollutant are monitored by sparsely-distributed Quality Assurance Air Monitoring Sites. Sparse mobile crowd-sourced data, such as cellular network data and GPS data, provide an alternative approach to evaluate the environmental impact of traffic congestion. This research establishes a framework for traffic-related air pollution evaluation using sparse mobile data and PeMS data. The proposed framework integrates traffic state model, emission model (EMFAC) and dispersion model (AERMOD). It develops an effective tool to evaluate the environmental impact of traffic congestion in an accurate, timely and economic way. The proposed model is applicable to varying traffic conditions and multiple transport modes on either urban arterial or freeways. The proposed system will provide suggestions to the transportation operator and public health officials to alleviate the risk of air pollutant, and can serve as a platform for other potential applications, such as eco-routing and eco-signal timing.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Evaluating the environmental impact of traffic congestion based on sparse mobile crowd-sourced data


    Beteiligte:
    Hao, Peng (Autor:in) / Wang, Chao (Autor:in) / Wu, Guoyuan (Autor:in) / Boriboonsomsin, Kanok (Autor:in) / Barth, Matthew (Autor:in)


    Erscheinungsdatum :

    01.11.2017


    Format / Umfang :

    826391 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    CROWD SOURCED TRAFFIC REPORTING

    GUEZIEC ANDRE | Europäisches Patentamt | 2017

    Freier Zugriff

    CROWD SOURCED TRAFFIC REPORTING

    GUEZIEC ANDRE | Europäisches Patentamt | 2018

    Freier Zugriff

    Using crowd-sourced traffic data and open-source tools for urban congestion analysis

    Khaula Alkaabi / Mohsin Raza / Esra Qasemi et al. | DOAJ | 2024

    Freier Zugriff

    Mining Urban Traffic Condition from Crowd-Sourced Data

    Mai-Tan, Ha / Pham-Nguyen, Hoang-Nam / Long, Nguyen Xuan et al. | Springer Verlag | 2020


    CROWD SOURCED TRAFFIC AND VEHICLE MONITORING SYSTEM

    EAKINS HARRY | Europäisches Patentamt | 2022

    Freier Zugriff