Each driver reacts differently to the same traffic conditions, however, most Advanced Driving Assistant Systems (ADAS) assume that all drivers are the same. This paper proposes a method to learn and to model the velocity profile that the driver follows as the vehicle decelerates towards a stop intersection. Gaussian Processes (GP), a machine learning method for non-linear regressions are used to model the velocity profiles. It is shown that GP are well adapted for such an application, using data recorded in real traffic conditions. GP allow the generation of a normally distributed speed, given a position on the road. By comparison with generic velocity profiles, benefits of using individual driver patterns for ADAS issues are presented.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Modelling stop intersection approaches using Gaussian processes


    Beteiligte:


    Erscheinungsdatum :

    01.10.2013


    Format / Umfang :

    1413099 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Functional discretization of space using Gaussian processes for road intersection crossing

    Barbier, Mathieu / Laugier, Christian / Simonin, Olivier et al. | IEEE | 2016


    Second stop position for intersection turn

    KANZAWA YUSUKE | Europäisches Patentamt | 2020

    Freier Zugriff

    INTERSECTION NON-STOP DRIVING CONTROL SYSTEM

    WATANABE MASAHIRO | Europäisches Patentamt | 2021

    Freier Zugriff

    Traffic intersection STOP&GO cruising method

    LIU SHUHONG / ZHANG JINDONG | Europäisches Patentamt | 2021

    Freier Zugriff

    SECOND STOP POSITION FOR INTERSECTION TURNING

    KANZAWA YUSUKE | Europäisches Patentamt | 2023

    Freier Zugriff