We propose a novel framework for Model-Based Diagnosis (MBD) that uses active testing to decrease the diagnostic uncertainty. This framework is called LYDIA-NG and combines several diagnostic, simulation, and active-testing algorithms. We have illustrated the workings of LYDIA-NG by building a LYDIA-NG-based decision support system for the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite. This paper discusses a model of the GOCE Electrical Power System (EPS), the algorithms for diagnosis and disambiguation, and the experiments performed with a number of diagnostic scenarios. Our experiments produced no false positive scenarios, no false negative scenarios, the average number of classification errors per scenario is 1.25, and the fault detection time is equal to the computation time. We have further computed an average fault uncertainty of 2.06 × 10−3 which can be automatically reduced to 9.5×10−4 by sending a single, automatically computed, telecommand, thus dramatically reducing the fault isolation time.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Model-Based Diagnostic decision-support system for satellites


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.03.2013


    Format / Umfang :

    497874 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Model Diagnostic Analysis of Global Coverage Satellites

    Kelly, Ryan / Ferringer, Matthew | AIAA | 2014


    Model Diagnostic Analysis of Global Coverage Satellites (AIAA 2014-4462)

    McKennon-Kelly, R. / Ferringer, M. / American Institute of Aeronautics and Astronautics; American Astronautical Society | British Library Conference Proceedings | 2014


    Intelligent decision making on-board satellites

    Růžička, V / https://orcid.org/orcid:0000-0001-6558-7197 | BASE | 2025

    Freier Zugriff

    Satellites Support Train Order Working

    British Library Online Contents | 1995


    AI based diagnostic and decision support systems for the trucking industry

    Wing,R.G. / Uttamsingh,R. / Synetics,US | Kraftfahrwesen | 1990