In this paper, the problem of spacecraft attitude control using adaptive neural network disturbance compensation technique is investigated. The proposed disturbance observer is developed based on the Radial Basis Function (RBF) neural network. Firstly, the RBF neural network algorithm and spacecraft dynamic model are given. Then, the RBF neural network observer is developed to estimate the external disturbance moment. Using the estimated information, an adaptive neural network disturbance compensation controller is designed. Meanwhile, the stability of closed-loop attitude control system is analyzed by using Lyapunov approach. The simulation results show that compared with the traditional PD controller, the developed control scheme can decrease the effect of the external disturbance and has a better control performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive Attitude Control Using Neural Network Observer Disturbance Compensation Technique


    Beteiligte:
    Huo, Junhai (Autor:in) / Meng, Tao (Autor:in) / Jin, Zhonghe (Autor:in)


    Erscheinungsdatum :

    01.06.2019


    Format / Umfang :

    304936 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch