In computer vision, estimating face age from face images is an important but challenging task. In this paper, we put forward a general framework called deep multilevel feature fusion network. This deep convolution neural network framework can combine the features extracted from convolution layers of different depths, which can not only ensure the heterogeneity of features, but also ensure the complementarity of features, and can estimate age attributes from the face image. We finetune the deep convolution neural network to a deep level feature fusion network, and use the age classifier to classify the age-related features of the face extracted by the new feature extraction method. This strategy can incorporate the information extracted from face image more effectively, and further improve the ability of age estimation. The highly discriminative and compact classification framework enables the classification accuracy to reach the advanced level on several face image datasets.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Multi-level Feature Fusion Network for Age Estimation


    Beteiligte:
    Chen, Liming (Autor:in) / Jiang, Qiang (Autor:in) / Huang, Chuan (Autor:in)


    Erscheinungsdatum :

    20.10.2021


    Format / Umfang :

    952569 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Feature-level sensor fusion

    Peli, T. Young, M. Knox, R. Ellis, K. K. | British Library Conference Proceedings | 1999


    Recursive building of local maps using multi level feature fusion

    Richter, Eric / Scheunert, U. / Wanielik, G. | Tema Archiv | 2007


    Intelligent non-pneumatic tire health monitoring method based on multi-feature fusion deep neural network

    DENG YAOJI / LU KEYU / WANG ZHIYUE et al. | Europäisches Patentamt | 2024

    Freier Zugriff


    Feature-level fusion in personal identification

    Yongsheng Gao, / Maggs, M. | IEEE | 2005