Robots and autonomous vehicles have been integrated in our life and utilized in a plethora of application scenarios, including intelligent transportation, industrial automation and smart agriculture. Several of the these applications might be functioning in environments where cellular network coverage is low or non-existent. In a case like this, lower bandwidth networks and vehicle-to-vehicle communication can be used to keep the application operating safely, even with less active features. In such settings, disconnection events can be avoided if deteriorating communication links are detected early so that prevention measures can be taken. In this paper we investigate how we can predict if a communication link will be terminated in the near future based on the recent trend of the signal. We propose a deep neural network framework which is executed onboard and we evaluate its performance based on simulation and real word data. The results show that we can predict the termination of a link up to 7 seconds into the future with 72.38% accuracy and 86.38% recall.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Short-Term Wireless Connectivity Prediction for Connected Agricultural Vehicles




    Erscheinungsdatum :

    24.09.2023


    Format / Umfang :

    453901 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Connectivity-Aware Traffic Phase Scheduling for Heterogeneously Connected Vehicles

    Zhou, Shanyu / Seferoglu, Hulya | ArXiv | 2016

    Freier Zugriff

    WIRELESS COMMUNICATION SYSTEM FOR AGRICULTURAL VEHICLES

    MORSELLI RICCCARDO | Europäisches Patentamt | 2019

    Freier Zugriff

    CONTROL METHOD OF POWER TAKE-OFF CONNECTED TO AGRICULTURAL VEHICLES

    KWAK BONG WOO / KIM MYUNG BOK | Europäisches Patentamt | 2019

    Freier Zugriff