We present herein a quasi-3D multiphysics model of a notional all-electric ship railgun, along with its application to assess the practicality of exploiting seawater for railgun cooling. The model combines a 2D electromagnetic-thermal model and a 3D thermal-fluid model developed based on the fundamental laws of electromagnetism, heat transfer, and fluid dynamics, and is solved numerically with appropriate initial and boundary conditions. Simulation results demonstrate the proposed model's ability to capture intricate electromagnetic-thermal interactions at a low computational cost. Furthermore, we conclude that optimal cooling channel allocation in the rail are needed to achieve the desired cooling effect within a short time period.
Multiphysics model of a notional all-electric ship railgun — Model development and application
01.08.2017
3218766 byte
Aufsatz (Konferenz)
Elektronische Ressource
Englisch