As the demand for autonomous driving systems continues to rise, the need for proficient highway navigation becomes paramount. This study presents a comprehensive approach to training autonomous cars for proficient highway driving using deep reinforcement learning. The research focuses on critical maneuvers of switching lanes on the road. A sophisticated simulation environment is then employed for training, enabling safe and efficient iterations. The primary objective of this project is to develop a more adaptive and efficient navigation system using Deep Reinforcement Learning (DRL). Utilizing the HighwayEnv environment and Stable Baselines' Deep Q-Network (DQN) and Proximal Policy Optimization (PPO) algorithms, the project aims to create a model capable of real-time decision-making and multi-objective optimization, thereby improving the overall efficiency and safety of highway navigation. A comparative analysis has been performed on these two algorithms to know the best algorithm suitable for the task of switching lanes. The developed system demonstrates promising results in mastering complex highway scenarios, showcasing the potential for a safer and more efficient autonomous driving future.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Autonomous Car Driving: Advanced Maneuvers Training


    Beteiligte:
    Chethana, Savarala (Autor:in) / Charan, Sreevathsa Sree (Autor:in) / Srihitha, Vemula (Autor:in) / Radha, D. (Autor:in) / J., Amudha (Autor:in)


    Erscheinungsdatum :

    21.09.2024


    Format / Umfang :

    1290053 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Safe Swerve Maneuvers for Autonomous Driving

    de Iaco, Ryan / Smith, Stephen L. / Czarnecki, Krzysztof | IEEE | 2020


    SAFE SWERVE MANEUVERS FOR AUTONOMOUS DRIVING

    De Iaco, Ryan / Smith, Stephen L. / Czarnecki, Krzysztof | British Library Conference Proceedings | 2020


    Autonomous Driving Learning Preference of Collision Avoidance Maneuvers

    Nagahama, Akihito / Saito, Takahiro / Wada, Takahiro et al. | IEEE | 2021


    Planning for Safe Abortable Overtaking Maneuvers in Autonomous Driving

    Palatti, Jiyo / Aksjonov, Andrei / Alcan, Gokhan et al. | IEEE | 2021


    Planning for Safe Abortable Overtaking Maneuvers in Autonomous Driving

    Palatti, Jiyo / Aksjonov, Andrei / Alcan, Gokhan et al. | ArXiv | 2021

    Freier Zugriff