Aviation safety is paramount, demanding precise analysis of safety occurrences during different flight phases. This study employs Natural Language Processing (NLP) and Deep Learning models, including LSTM, CNN, Bidirectional LSTM (BLSTM), and simple Recurrent Neural Networks (sRNN), to classify flight phases in safety reports from the Australian Transport Safety Bureau (ATSB). The models exhibited high accuracy, precision, recall, and F1 scores, with LSTM achieving the highest performance of 87%, 88%, 87%, and 88%, respectively. This performance highlights their effectiveness in automating safety occurrence analysis. The integration of NLP and Deep Learning technologies promises transformative enhancements in aviation safety analysis, enabling targeted safety measures and streamlined report handling.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Aviation Safety Enhancement via NLP & Deep Learning: Classifying Flight Phases in ATSB Safety Reports


    Beteiligte:
    Nanyonga, Aziida (Autor:in) / Wasswa, Hassan (Autor:in) / Wild, Graham (Autor:in)


    Erscheinungsdatum :

    01.12.2023


    Format / Umfang :

    1460518 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Aviation Safety Enhancement via NLP & Deep Learning: Classifying Flight Phases in ATSB Safety Reports

    Nanyonga, Aziida / Wasswa, Hassan / Wild, Graham | ArXiv | 2025

    Freier Zugriff



    Flight Safety in Business Aviation

    Robinson, J. B. / Royal Aeronautical Society | British Library Conference Proceedings | 1998


    Mining and Classifying Aviation Accident Reports

    Srinivasan, Prabhakar / Nagarajan, Venkataramana / Mahadevan, Sankaran | AIAA | 2019