A learning disability is a neurological illness that impairs a child's ability to read, speak, and do a variety of other skills. The World Health Organization (WHO) estimates that learning disabilities impact 15% of youngsters [14]. The most important challenge for researchers to perform in order to identify learning disabilities early on is efficient prediction and accurate categorization. Our primary goal in this effort is to use soft computing to create a model for the prediction and categorization of learning disabilities. This study proposes a hybrid approach for enabling classification in order to enhance the performance of prediction and classification. This method incorporated classification's primary five techniques. Random Forest, Logistic Regression, Stochastic Gradient Descent, and K-Fold cross validation. In order to implement the system used python. Results analysis reveals the predict of learning disability in effectively


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Hybrid ML Algorithms for Learning Disability Forecast in School Going Children Using Python in Machine Learning Techniques


    Beteiligte:
    T, Margaret Mary (Autor:in) / Prakash, V S (Autor:in) / K S, Divya (Autor:in) / George, Amalorpavam (Autor:in)


    Erscheinungsdatum :

    22.11.2023


    Format / Umfang :

    496894 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Wind forecast uncertainty prediction using Machine Learning techniques on Big Weather Data

    Cabos, Rene / Hecker, Peter / Kneuper, Nils et al. | AIAA | 2017


    A Novel Predictability Performance Metric and Its Forecast Using Machine Learning Techniques

    Montes, Rocio Barragan / Rojas, Ana Delcan / Gomez Comendador, Victor Fernando et al. | IEEE | 2018


    Concerns with Using Python in Machine Learning Flight Critical Applications

    Carter, H. / Chan, A. / Vinegar, C. et al. | British Library Conference Proceedings | 2023


    Wind Forecast Uncertainty Prediction Using Machine Learning Techniques on Big Weather Data (AIAA 2017-3077)

    Cabos, Rene / Hecker, Peter / Kneuper, Nils et al. | British Library Conference Proceedings | 2017


    Predictive Analysis and Application of Various Machine Learning Algorithms to Forecast used Car Prices

    Srinivasan, Palayanur / Reddy, R Obulakonda / Sai, Kaki Anirudh et al. | IEEE | 2023