Variable Speed Limit (VSL) is a commonly applied active traffic management measure for urban motorways. In recent years, model-based and model-free approaches have been extensively adopted to solve VSL optimization problems. However, the success of model-based VSL relies heavily on the nature of the environmental model adopted (e.g., traffic flow model). Implicit environment models may result in inappropriate control actions. Although model-free approaches are able to directly map raw measurements to control actions without a need for an environment model, they usually require large amounts of training data. In order to address these issues, we propose an Imagination-Augmented Agent (I2A) for VSL control. The I2A consists an imagination path and a model-free path, which work together to generate appropriate control actions. The simulation results show that the proposed I2A agent outperforms other tested Reinforcement Learning (RL) agents in terms of Total Time Spent and bottleneck volume.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Imagination-Augmented Reinforcement Learning Framework for Variable Speed Limit Control


    Beteiligte:
    Li, Duo (Autor:in) / Lasenby, Joan (Autor:in)


    Erscheinungsdatum :

    01.02.2024


    Format / Umfang :

    1149828 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Extended Variable Speed Limit control using Multi-agent Reinforcement Learning

    Kusic, Kresimir / Dusparic, Ivana / Gueriau, Maxime et al. | IEEE | 2020




    Field Deployment of Multi-Agent Reinforcement Learning Based Variable Speed Limit Controllers

    Zhang, Yuhang / Zhang, Zhiyao / Quinones-Grueiro, Marcos et al. | IEEE | 2024


    Dynamic Variable Speed Limit Zones Allocation Using Distributed Multi-Agent Reinforcement Learning

    Kusic, Kresimir / Ivanjko, Edouard / Vrbanic, Filip et al. | IEEE | 2021