This article aims to investigate intelligent strategies of interference suppression for radar systems in the background of complex electromagnetic interferences. At the modeling stage, an interactive loop is established exploiting the interaction between the radar and the environment for interference suppression based on reinforcement learning. Specifically, the mappings from the interference suppression to the reinforcement learning, including the interference state set, the method set, evaluation criteria of interference suppression in different domains, and the principle of interference substate transformation, have been established. In this respect, two algorithms, including the Retroactive-Q (R-Q) learning and Retroactive-Deep Q Network (R-DQN), are developed by introducing a backtracking Q-value, which links the evaluations in each time step of a training round. At the analysis stage, the selection probabilities of the optimal implementation sequence for interference suppression are studied, and comparisons among the devised R-Q learning, R-DQN, conventional Q learning, and DQN are carried out in terms of output Q-values. Numerical results corroborate the effectiveness and robustness of the considered suppression strategies in diverse scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Intelligent Suppression of Interferences Based on Reinforcement Learning


    Beteiligte:
    Zhang, Xiang (Autor:in) / Lan, Lan (Autor:in) / Zhu, Shengqi (Autor:in) / Li, Ximin (Autor:in) / Liao, Guisheng (Autor:in) / Xu, Jingwei (Autor:in)


    Erscheinungsdatum :

    01.04.2024


    Format / Umfang :

    6061343 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Interferences

    Charles-Faroux, R. | Engineering Index Backfile | 1932


    Super Resolution and Interferences Suppression Technique Applied to SHARAD Data

    Raguso, Maria Carmela / Mastrogiuseppe, Marco / Seu, Roberto et al. | IEEE | 2018


    Intelligent parking method based on model reinforcement learning

    CHEN HUI / SONG SHAOYU / SUN HONGWEI et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Reducing Interferences in VANETs

    Zelikman, Dmitry / Segal, Michael | IEEE | 2015


    Local Planning Strategy Based on Deep Reinforcement Learning Over Estimation Suppression

    Han, Ling / Wang, Yiren / Chi, Ruifeng et al. | Springer Verlag | 2024