A robust sensor bias estimation approach, named as the ridge least trimmed squares (RLTS), is proposed. Combing the advantages of ridge regression and least trimmed squares, RLTS can solve the sensor bias estimation problem with the presence of misassociations and ill-conditioning. Simulation results verify the effectiveness of the proposed approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Sensor Bias Estimation Based on Ridge Least Trimmed Squares


    Beteiligte:
    Tian, Wei (Autor:in) / Huang, Gaoming (Autor:in) / Peng, Huafu (Autor:in) / Wang, Xuebao (Autor:in) / Lin, Xiaohong (Autor:in)


    Erscheinungsdatum :

    01.04.2020


    Format / Umfang :

    713653 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Generalized least squares-based parametric motion estimation

    Montoliu, R. / Pla, F. | British Library Online Contents | 2009


    Bias-compensated Least Squares Method in Closed Loop Environment

    Ikeda, K. / Mogami, Y. / Shimomura, T. | British Library Online Contents | 2007


    Spacecraft inertia estimation via constrained least squares

    Keim, J.A. / Behcet Acikmese, A. / Shields, J.F. | IEEE | 2006