Traffic sign recognition is an essential component of perception in autonomous vehicles, which is currently performed almost exclusively with deep neural networks (DNNs). However, DNNs are known to be vulnerable to adversarial attacks. Several previous works have demonstrated the feasibility of adversarial attacks on traffic sign recognition models. Traffic signs are particularly promising for adversarial attack research due to the ease of performing real-world attacks using printed signs or stickers. In this work, we survey existing works performing either digital or real-world attacks on traffic sign detection and classification models. We provide an overview of the latest advancements and highlight the existing research areas that require further investigation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adversarial Attacks on Traffic Sign Recognition: A Survey


    Beteiligte:


    Erscheinungsdatum :

    19.07.2023


    Format / Umfang :

    3515852 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Adversarial Attacks on Skeleton-Based Sign Language Recognition

    Li, Yufeng / Han, Meng / Yu, Jiahui et al. | TIBKAT | 2023


    Adversarial Attacks on Skeleton-Based Sign Language Recognition

    Li, Yufeng / Han, Meng / Yu, Jiahui et al. | Springer Verlag | 2023



    TRAFFIC SIGN RECOGNITION DEVICE AND TRAFFIC SIGN RECOGNITION METHOD

    MIYASATO KAZUHIRO / KOYASU TOSHIYA | Europäisches Patentamt | 2023

    Freier Zugriff

    TRAFFIC SIGN RECOGNITION DEVICE AND TRAFFIC SIGN RECOGNITION METHOD

    SHINOMIYA TERUHIKO | Europäisches Patentamt | 2017

    Freier Zugriff