In this paper, we detail a complete software architecture of a key task that an intelligent vehicle has to deal with: frontal object perception. This task is solved by processing raw data of a radar and a mono-camera to detect and track moving objects. Data sets obtained from highways, country roads and urban areas were used to test the proposed method. Several experiments were conducted to show that the proposed method obtains a better environment representation, i.e., reduces the false alarms and missed detections from individual sensor evidence.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Frontal object perception using radar and mono-vision


    Beteiligte:


    Erscheinungsdatum :

    01.06.2012


    Format / Umfang :

    1305362 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Frontal Object Perception Using Radar and Mono-Vision

    Chavez-Garcia, R.O. / Burlet, J. / Vu, T.-D. et al. | British Library Conference Proceedings | 2012


    FUSION AT DETECTION LEVEL FOR FRONTAL OBJECT PERCEPTION

    Chavez-Garcia, R. / Vu, T. / Aycard, O. et al. | British Library Conference Proceedings | 2014


    Vision meets mmWave Radar: 3D Object Perception Benchmark for Autonomous Driving

    Wang, Yizhou / Cheng, Jen-Hao / Huang, Jui-Te et al. | IEEE | 2024


    Mono-vision based moving object detection in complex traffic scenes

    Fremont, Vincent / Florez, Sergio Alberto Rodriguez / Wang, Bihao | IEEE | 2017


    Mono-Vision Based Moving Object Detection in Complex Traffic Scenes

    Fremont, Vincent / Rodriguez, Sergio / Wang, Bihao | British Library Conference Proceedings | 2017