Predicting droplet size distribution as a function of chemical composition, input pressure, nozzle geometry, and atmospheric conditions using algebraic approach is extremely complicated due to the number of variables involved, especially for agricultural spray applications. A low cost shadowgraphy technique was used to capture the spray pattern from six different standard ASABE nozzles (ranging from extremely coarse 6515 type to very fine 11001 nozzle type) at different inlet pressures, along with various combinations of adjuvant mixtures. The resultant images were then fed into convolution neural network (CNN) architecture to classify the different nozzle types, pressure, and the adjuvant mixtures. Preliminary results show that the CNN architecture was able to classify the spray patterns with different nozzles, pressures, and adjuvant mixtures with more than 98% accuracy. The architecture was able to identify the subtle changes in the atomization in different configurations which is shown through class activation mapping.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Deep Learning Algorithm for Atomization Characterization using Shadowgraph Images


    Beteiligte:


    Erscheinungsdatum :

    16.08.2021


    Format / Umfang :

    17923139 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Deep Learning Algorithm for Atomization Characterization using Shadowgraph Images

    Ivarson, Joseph T. / Maneck, Lars / Narayanan Narayanan, Barath et al. | AIAA | 2022




    Analysis of Cavity Passive Flow Control using High Speed Shadowgraph Images

    Schmit, Ryan / Semmelmayer, Frank / Haverkamp, Mitchell et al. | AIAA | 2012


    Screech Noise Characterization using Dynamic Mode Decomposition and Shadowgraph Imagery

    Burak, Markus O. / Gustafsson, Bernhard / Malla, Bhupatindra et al. | AIAA | 2016