The growing number of vehicles has led to increased emissions of polluting gases, necessitating accurate forecasting for effective mitigation strategies and sustainable urban development. Leveraging computational resources in vehicles, this study presents a framework, called EcoPredict, for predicting CO2 emissions in collaborative vehicular network environments. The framework implements three forms of learning methods—centralized, federated, and split—using urban sensor networks for data collection. Experiments carried out in realistic vehicular mobility scenarios demonstrate the framework’s robustness and efficiency in providing real-time emission predictions. Each learning architecture has its own advantages and limitations regarding performance, training time, latency, communication overhead, and data privacy. Therefore, this work aims to assess their performance to analyze their effectiveness in urban environments.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    EcoPredict: Assessing Distributed Machine Learning Methods for Predicting Urban Emissions


    Beteiligte:


    Erscheinungsdatum :

    07.10.2024


    Format / Umfang :

    1501395 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Applications of Machine Learning in Predicting Welding Emissions

    Jilla, Abhinay / Mert, Tolga | TIBKAT | 2018

    Freier Zugriff

    Assessing Impacts Of Ghg Abatement Measures On Urban Freight Emissions

    Zito, R. / Marquez, L. | British Library Conference Proceedings | 2005


    Machine learning framework for predicting urban road speed profiles and uncertainty

    Gañan-Cardenas, Eduard / Pemberthy-R., J. Isaac / Suárez-Gómez, Marta Lucía et al. | Elsevier | 2025

    Freier Zugriff

    Predicting CO and NOx Emissions from a Gas Turbine Using Machine Learning Techniques

    Shahadat, Muhammad Rubayat Bin / Murillo, Michael S. / Jaberi, Farhad | AIAA | 2023


    Machine Learning Methods for Predicting Traffic Congestion Forecasting

    Rele, Mayur / Julian, Anitha / Patil, Dipti et al. | Springer Verlag | 2024