This paper introduces a dangerous-driving warning system that uses statistical modeling to predict driving risks. The major challenge of the research is how to discover the safe/dangerous driving patterns from a sparsely labeled training data set. This paper proposes a semisupervised learning method to utilize both the labeled and the unlabeled data, as well as their interdependence to build a proper danger-level function. In addition, the learned function adopts a continuous parametric form, which is more suitable in modeling the continuous safe/dangerous-driving state transitions in a practical dangerous-driving warning system. Our comprehensive experimental evaluations reveal that, in comparison with driving danger-level estimation using classification-based methods, such as the hidden Markov model (HMM) or the conditional random field algorithm, the proposed method requires less training time and achieved higher prediction accuracy.
Driving Safety Monitoring Using Semisupervised Learning on Time Series Data
IEEE Transactions on Intelligent Transportation Systems ; 11 , 3 ; 728-737
01.09.2010
1606255 byte
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Semisupervised visualization of high-dimensional data
British Library Online Contents | 2007
|Semisupervised Visualization of High-Dimensional Data
British Library Online Contents | 2005
|Vehicle Type Classification Using a Semisupervised Convolutional Neural Network
Online Contents | 2015
|