Traffic congestion is a world-wide problem with far-reaching consequences. Due to road topology as well as driver behavior, extreme degrees of congestion can occur. Just as in biological swarms, stochastic properties of individual agents contribute to the emergence of macroscopic network properties. In this paper we apply approaches for swarm behavior to road traffic, expanding them to include road topology and driver behavior. By varying traffic density, we study the phase transitions arising in traffic when moving from a free-flow to congested state. Ideally, understanding how phase transitions occur in realistic traffic will allow us to identify early signs and prevent such transitions from happening in real traffic, before the critical point is reached.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Exploring congestion phase transitions in vehicular traffic via topology and driver behavior modeling


    Beteiligte:
    Bevilacqua, C. (Autor:in) / Bogdan, P. (Autor:in) / Marculescu, R. (Autor:in)


    Erscheinungsdatum :

    01.06.2011


    Format / Umfang :

    1230737 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Machine Learning Solutions to Vehicular Traffic Congestion

    Chhatpar, Pavan / Doolani, Nimesh / Shahani, Sumeet et al. | IEEE | 2018



    Congestion boundary approach for phase transitions in traffic flow

    Lee, Eun Hak / Lee, Euntak | Taylor & Francis Verlag | 2024


    COOPERATIVE TRAFFIC CONGESTION DETECTION FOR CONNECTED VEHICULAR PLATFORM

    GUNEY MEHMET ALI / GUO RUI / TIWARI PRASHANT | Europäisches Patentamt | 2023

    Freier Zugriff

    Traffic Congestion Prediction Using Categorized Vehicular Speed Data

    Kumar, Manoj / Kumar, Kranti | Springer Verlag | 2022