In the context of public transport modeling and simulation, we address the problem of mismatch between simulated transit trips and observed ones. We point to the weakness of the current travel demand modeling process; the trips it generates are overly optimistic and do not reflect the real passenger choices. To explain the deviation of simulated trips from the observed trips, we introduce the notion of mini-activities the travelers do during the trips. We propose to mine the smart card data and identify characteristics that help detect the mini activities. We develop a technique to integrate them in the generated trips and learn such an integration from two available sources, the trip history and trip planner recommendations. For an input travel demand, we build a Markov chain over the trip collection and apply the Monte Carlo Markov Chain algorithm to integrate mini activities in such a way that the trip characteristics converge to the target distributions. We test our method on the trip data set collected in Nancy, France. The evaluation results demonstrate a very important reduction of the trip generation error, and a good capacity to cope with new simulation scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Mining Smart Card Data for Travellers’ Mini Activities


    Beteiligte:


    Erscheinungsdatum :

    01.11.2018


    Format / Umfang :

    2310779 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Mining missing train logs from Smart Card data

    Hong, Sung-Pil | Online Contents | 2016





    Enabling Disposal Smart Tickets for Irregular Travellers (PowerPoint)

    Crotch-Harvey, T. / International Union of Public Transport | British Library Conference Proceedings | 2004