Traffic simulation models have seen increasing use during the past decades. One of the biggest challenges related to their successful application, is the appropriate set of their values, thus achieving the accurate representation of driving and travel behavior parameters' diversity. Models' calibration using optimization algorithms, and more specifically the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm, is a crucial step. In this research, we study several aspects of SPSA's algorithm. A sensitivity analysis is implemented, in the context of finding the appropriate set of parameters, that will significantly improve its performance. Through successive experiments, the most efficient set is selected, and some guidelines are presented.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Developing insight into effective SPSA parameters through sensitivity analysis


    Beteiligte:


    Erscheinungsdatum :

    01.06.2015


    Format / Umfang :

    1153149 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    PC–SPSA: Employing Dimensionality Reduction to Limit SPSA Search Noise in DTA Model Calibration

    Qurashi, Moeid / Ma, Tao / Chaniotakis, Emmanouil et al. | IEEE | 2020


    SPSA Algorithm for Parachute Parameter Estimation

    Kothandaraman, Govindarajan / Rotea, Mario | AIAA | 2003


    SPSA/SIMMOD Optimization of Air Traffic Delay Cost

    Kleinman, N. L. / Hill, S. D. / Ilenda, V. A. et al. | British Library Conference Proceedings | 1999


    Fast Beamforming Based on SPSA for Mobile Satellite Antenna

    Zhang, Lanlan / Hao, Yingguang | British Library Conference Proceedings | 2015


    Dynamic Origin-Destination Matrix Estimation with ICT Traffic Measurements using SPSA

    Ros-Roca, Xavier / Montero, Lidia / Barcelo, Jaume et al. | IEEE | 2021