This paper presents the implementation of a Recurrent Neural Network (RNN) based-controller for the stabilization of the flight transition maneuver (hover-cruise and vice versa) of a tail-sitter UAV. The control strategy is based on attitude and velocity stabilization. For that aim, the RNN is used for the estimation of high nonlinear aerodynamic terms during the transition stage. Then, this estimate is used together with a feedback linearization technique for stabilizing the entire system. Results show convergence of linear velocities and the pitch angle during the transition maneuver. To analyze the performance of our proposed control strategy, we present simulations for the transition from hover to cruise and vice versa.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Transition control of a tail-sitter UAV using recurrent neural networks


    Beteiligte:


    Erscheinungsdatum :

    01.09.2020


    Format / Umfang :

    1286931 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    TAIL SITTER

    BIANCO MENGOTTI RICCARDO | Europäisches Patentamt | 2022

    Freier Zugriff

    TAIL SITTER

    BIANCO MENGOTTI RICCARDO | Europäisches Patentamt | 2020

    Freier Zugriff

    Tail sitter

    BIANCO MENGOTTI RICCARDO | Europäisches Patentamt | 2023

    Freier Zugriff

    TAIL SITTER

    DRSTICKA MARTIN | Europäisches Patentamt | 2018

    Freier Zugriff

    Tail sitter

    BIANCO MENGOTTI RICCARDO | Europäisches Patentamt | 2024

    Freier Zugriff