The conventional individual in good health drinks 2.5 to 3.5 Liters of water per day. A person can stay alive for a few weeks by drinking just pure water while starving. The key objective of this research is to determine the best approach for the statistically imputed dataset and algorithm that yields the most accurate water level prediction. In order to accomplish the best accuracy when compared to the separate algorithms, we integrated two machine learning algorithms using voting classifier. Our dataset, which included nine features and some missing values, was pre-processed using the mean of each characteristic, producing a desirable dataset. Our machine learning algorithms research on water potability yielded an impressive accuracy rate of 91%, as we found in the end. The results reported here demonstrate how machine learning may enhance the evaluation of water quality, providing promising advancements for ensuring consistent and secure water sources.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Prediction of Water Potability Through Voting Classifier


    Beteiligte:


    Erscheinungsdatum :

    06.11.2024


    Format / Umfang :

    551390 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Apollo spacecraft water potability

    Bottomley, T. A. / Dawson, D. L. | NTRS | 1968



    Detecting anomalous vehicle behavior through automatic voting

    FUKUDA MARI ABE / HOSOKAWA SATOSHI / NISHIMURA YASUTAKA | Europäisches Patentamt | 2020

    Freier Zugriff

    DETECTING ANOMALOUS VEHICLE BEHAVIOR THROUGH AUTOMATIC VOTING

    FUKUDA MARI ABE / HOSOKAWA SATOSHI / NISHIMURA YASUTAKA | Europäisches Patentamt | 2019

    Freier Zugriff

    Edge-preserving color image denoising through tensor voting

    Moreno, R. / Garcia, M. A. / Puig, D. et al. | British Library Online Contents | 2011