Autonomous vehicle (AV) is one of the most challenging engineering tasks of our era. High-Definition (HD) maps are a fundamental tool in the development of AVs, being considered as pseudo sensors that provide a trusted baseline that other sensors cannot. Our approach is focused on the use of OpenDRIVE standard based HD maps in order to conduct the different mapping and planning tasks involved in Autonomous Driving (AD). In this paper we present a method for exploiting the HD map potential for two specific purposes: i) Global Path Planning and ii) Monitoring the relevant lanes and regulatory elements around the ego-vehicle to support the perception module. Mapping and planning modules are connected to the other modules of the AV stack by using ROS (Robot Operating System). Our AD architecture has been validated both in local and CARLA Autonomous Driving Leaderboard cloud, where we can appreciate a considerable improvement in the metrics by incorporating information from the HD map, not only used to conduct the Global Path Planning task but also providing prior information to the Perception module. Code is available in https://github.com/AlejandroDiazD/opendrive-mapping-planning.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    HD maps: Exploiting OpenDRIVE potential for Path Planning and Map Monitoring


    Beteiligte:


    Erscheinungsdatum :

    05.06.2022


    Format / Umfang :

    2268095 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    OpenDrive Testfeld A9

    Bundesministerium für Digitales und Verkehr (BMDV) | Mobilithek

    Freier Zugriff

    Automatic Odometry-Less OpenDRIVE Generation From Sparse Point Clouds

    Eiseman, Leon / Maucher, Johannes | IEEE | 2023


    Exploiting GPUs for multi-agent path planning on grid maps

    CAGGIANESE, GIUSEPPE / ERRA, UGO | BASE | 2012

    Freier Zugriff

    Path planning for cognitive vehicles using risk maps

    Schroder, Joachim / Gindele, Tobias / Jagszent, Daniel et al. | IEEE | 2008


    Path Planning for Cognitive Vehicles Using Risk Maps

    Schroeder, J. / Gindele, T. / Jagszent, D. et al. | British Library Conference Proceedings | 2008