High-quality radio frequency (RF) components are imperative for efficient wireless communication. However, these components can degrade over time and need to be identified so that either they can be replaced or their effects can be compensated. The identification of these components can be done through observation and analysis of constellation diagrams. However, in the presence of multiple distortions, it is very challenging to isolate and identify the RF components responsible for the degradation. This paper highlights the difficulties of distorted RF components’ identification and their importance. Furthermore, a deep multi-task learning algorithm is proposed to identify the distorted components in the challenging scenario. Extensive simulations show that the proposed algorithm can automatically detect multiple distorted RF components with high accuracy in different scenarios.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Identification of Distorted RF Components via Deep Multi-Task Learning


    Beteiligte:


    Erscheinungsdatum :

    01.09.2022


    Format / Umfang :

    651032 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    MTDT: A Multi-Task Deep Learning Digital Twin

    Yousefzadeh, Nooshin / Sengupta, Rahul / Karnati, Yashaswi et al. | IEEE | 2024


    MultiMix: A Multi-Task Deep Learning Approach for Travel Mode Identification with Few GPS Data

    Song, Xiaozhuang / Markos, Christos / Yu, James J.Q. | IEEE | 2020


    Deep learning autotuning task optimization

    CHO JUNGUK / SHARMA PUNEET / STILLER DOMINIK | Europäisches Patentamt | 2024

    Freier Zugriff


    Multi-Task Travel Route Planning With a Flexible Deep Learning Framework

    Huang, Feiran / Xu, Jie / Weng, Jian | IEEE | 2021