In this paper, we establish a sparse geometric-based millimeter-wave (mmWave) band multiple-input and multiple-output (MIMO) channel model between a high throughput satellite (HTS) and terrestrial user equipments (UEs) for space information network (SIN). By exploiting the inherent sparsity of mmWave band, we propose an adaptive random-selected multi-beamforming (ARM) estimation scheme for efficient mmWave MIMO channel modeling in SIN. The ARM estimation scheme measures the propagation paths between the HTS and UEs in angle domain, where the HTS can randomly select multiple beamformings to estimate the CSI of multiple UEs simultaneously. Compare to the existing fix number of measurements schemes, the required number of measurements in our ARM estimation scheme can adaptively reduce as well as the signal-to-noise ratio (SNR) increases. Simulation results show that our ARM estimation scheme can reduce the required number of measurements and achieve a better tracking performance over a wide range of SNRs.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Efficient Millimeter-Wave MIMO Channel Estimation Scheme for Space Information Networks


    Beteiligte:
    Li, Qiwen (Autor:in) / Jiao, Jian (Autor:in) / Sun, Yunyu (Autor:in) / Wu, Shaohua (Autor:in) / Wang, Ye (Autor:in) / Zhang, Qinyu (Autor:in)


    Erscheinungsdatum :

    01.09.2019


    Format / Umfang :

    801793 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Millimeter-Wave Massive MIMO Vehicular Channel Modeling

    Cheng, Xiang / Gao, Shijian / Yang, Liuqing | Springer Verlag | 2022


    A Frame-Theoretic Scheme for Robust Millimeter Wave Channel Estimation

    Stoica, Razvan-Andrei / Abreu, Giuseppe Thadeu Freitas de / Iimori, Hiroki | IEEE | 2018


    Channel Estimation for Millimeter Wave Wideband Massive MIMO Systems via Tensor Decomposition

    Cheng, Long / Yue, Guangrong / Xiong, Xinyu et al. | IEEE | 2019