This paper presents the outcome of several machine learning techniques used for the task of bird/drone classification based on their tracks. Instead of using static images, the dynamics and features extracted from the trajectories captured in videos are used to provide a more accurate and reliable recognition task. Standard Machine Learning methods such as SVM and Random Forest are used for learning this classification. Features based on the kinematics, Gabor filter, and Gray Level Co-occurrence Matrix are utilized. Several comparisons and experiments based on benchmark data sets are shown.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Drone/Bird Classification Based on Features of Tracks Trajectories




    Erscheinungsdatum :

    04.03.2023


    Format / Umfang :

    7318627 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    DRONE DEVICE FOR DEFENDING BIRD ACCESS

    JIN TAE SEOK / JEONG JAE HA | Europäisches Patentamt | 2024

    Freier Zugriff

    DEFORMABLE WING-BASED AGRICULTURAL BIONIC BIRD REPELLING DRONE

    HAN XIN / WANG HUIZHENG / LAN YUBIN et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    BIRD: Battlefield-Integrated Reconnaissance Drone With VQA

    Rayon, Nathan / Menser, Kobi / Catalano, Louis et al. | AIAA | 2025


    AIRFIELD BIRD STRIKE SYSTEM USING ROBOT DRONE

    CHOI BYEONG GWAN | Europäisches Patentamt | 2020

    Freier Zugriff

    Assessment of LiDAR-Based Sensing Technologies in Bird–Drone Collision Scenarios

    Paula Seoane / Enrique Aldao / Fernando Veiga-López et al. | DOAJ | 2024

    Freier Zugriff