We apply a novel concept for distributed learning to the problem of driver status monitoring. The main benefit is that only local, in-vehicle training data is used, thus privacy sensitive pictures of the driver do not leave the vehicle. We show the challenges of this application, in particular in the distribution of the data and apply different, recent techniques of federated learning. In result, we show for our data set that federated learning can achieve almost same performance as classical learning, where all data is collected and processed in a single learning applications.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Federated Learning for Driver Status Monitoring


    Beteiligte:


    Erscheinungsdatum :

    19.09.2021


    Format / Umfang :

    868133 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Driver Monitoring-Based Lane-Change Prediction: A Personalized Federated Learning Framework

    Du, Runjia / Han, Kyungtae / Gupta, Rohit et al. | IEEE | 2023


    Dr. MTL: Driver Recommendation using Federated Multi-Task Learning

    Vyas, Jayant / Bhumika / Das, Debasis et al. | IEEE | 2023


    Personalized Federated Learning of Driver Prediction Models for Autonomous Driving

    Nakanoya, Manabu / Im, Junha / Qiu, Hang et al. | ArXiv | 2021

    Freier Zugriff

    DRIVER MONITORING DEVICE, DRIVER MONITORING METHOD, LEARNING DEVICE, AND LEARNING METHOD

    AOI HATSUMI / KINOSHITA KOICHI / AIZAWA CHITEI et al. | Europäisches Patentamt | 2018

    Freier Zugriff

    DRIVER MONITORING APPARATUS, DRIVER MONITORING METHOD, LEARNING APPARATUS, AND LEARNING METHOD

    AOI HATSUMI / KINOSHITA KOICHI / AIZAWA TOMOYOSHI et al. | Europäisches Patentamt | 2019

    Freier Zugriff