Efficient and reliable transmission of CSI is crucial for maintaining optimal performance in wireless communication networks. However, the feedback overhead remains a significant challenge. In this paper, we propose a novel feedback compression scheme leveraging the Sobel operator to enhance the efficiency of CSI transmission as yet another novel computer vision based solution. Specifically, our proposed scheme differentiates the dynamic and quasi-static components in given CSI matrices and builds on top of the CsiNet to learn and compress the dynamic components in CSI matrices, thereby significantly reducing feedback overhead while maintaining high reconstruction quality. We perform extensive simulations to demonstrate the effectiveness of our proposed scheme. Evaluation results indicate that our algorithm achieves comparable compression performance to baseline algorithms while significantly reducing computational overhead.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Reduced-Overhead CSI Feedback for Massive MIMO through Selective Component Processing


    Beteiligte:
    Li, Fuhao (Autor:in) / Udoidiok, Ifiok (Autor:in) / Zhang, Jielun (Autor:in)


    Erscheinungsdatum :

    07.10.2024


    Format / Umfang :

    739429 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Performance of Limited Feedback Strategies with Massive MIMO

    Vook, Frederick W. / Mondal, Bishwarup / Visotsky, Eugene | IEEE | 2015


    Fronthaul Load-Reduced Scalable Cell-Free massive MIMO by Uplink Hybrid Signal Processing

    Kanno, Issei / Ito, Masaaki / Ohseki, Takeo et al. | IEEE | 2022


    Feedback Reduction and Efficient Antenna Selection for Massive MIMO System

    Benmimoune, Mouncef / Driouch, Elmahdi / Ajib, Wessam et al. | IEEE | 2015



    Automatic Neural Network Design of Scene-customization for Massive MIMO CSI Feedback

    Li, Xiangyi / Guo, Jiajia / Wen, Chao Kai et al. | IEEE | 2023