A general method of continually restructuring an optimum Bayes-Kalman tracking filter is proposed by conceptualizing a growing tree of filters to maintain optimality on a target exhibiting maneuver variables. This tree concept is then constrained from growth by quantizing the continuously sensed maneuver variables and restricting these to a small value from which an average maneuver is calculated. Kalman filters are calculated and carried in parallel for each quantized variable. This constrained tree of several parallel Kalman filters demands only modest om; puter time, yet provides very good performance. This concept is implemented for a Doppler tracking system and the performance is compared to an extended Kalman filter. Simulation results are presented which show dramatic tracking improvement when using the adaptive tracking filter.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive Tracking Filter for Maneuvering Targets


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.01.1978


    Format / Umfang :

    1885559 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch