This paper presents a system to measure the speed of vehicles on roads. Traffic law violations are controlled by detecting over speeding vehicles. Vehicles in a video are detected, tracked and their speed is estimated. Speed estimation is performed based on camera input without any extra sensors making it cost effective. Fast Retina Key-point (FREAK) and Features from Accelerated Segment Test (FAST) algorithms are used for feature extraction. FAST and FREAK provide results rapidly and are helpful in real time applications. Time calculation for speed estimation is independent of the processor being used. Voting based classifier is used for detecting vehicles. Seven different classifiers are used in it. Random Forest provided the highest accuracy of 88.4% and F1 score of 88.5%. Proposed system provided speed estimation with an approximate error of 2 km/hr. The average percentage error obtained for the estimated speed is 9.22%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vision-Based Vehicle Speed Estimation


    Beteiligte:


    Erscheinungsdatum :

    15.03.2024


    Format / Umfang :

    292983 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Vision‐based vehicle speed estimation: A survey

    Fernández Llorca, David / Hernández Martínez, Antonio / García Daza, Iván | Wiley | 2021

    Freier Zugriff

    Vision‐based vehicle speed estimation: A survey

    David Fernández Llorca / Antonio Hernández Martínez / Iván García Daza | DOAJ | 2021

    Freier Zugriff

    Vision-based Vehicle Speed Estimation: A Survey

    Llorca, David Fernández / Martínez, Antonio Hernández / Daza, Iván García | ArXiv | 2021

    Freier Zugriff

    A Vision-Based Pipeline for Vehicle Counting, Speed Estimation, and Classification

    Liu, Chenghuan / Huynh, Du Q. / Sun, Yuchao et al. | IEEE | 2021


    HVD-Net: A Hybrid Vehicle Detection Network for Vision-Based Vehicle Tracking and Speed Estimation

    Muhammad Hassaan Ashraf / Farhana Jabeen / Hamed Alghamdi et al. | DOAJ | 2023

    Freier Zugriff