This paper describes a novel framework for comparing and matching corrupted relational graphs. The normalised edit distance of Marzal and Vidal (1993) can be used to model the probability distribution for structural errors in the graph-matching problem. This probability distribution is used to locate matches using MAP label updates. We compare this criterion with that recently reported by Wilson and Hancock (1997). The use of edit distance offers an elegant alternative to the exhaustive compilation of label dictionaries. Moreover the method is polynomial rather than exponential in its worst-case complexity. We support our approach with an experimental study on synthetic data, and illustrate its effectiveness on an uncalibrated stereo correspondence problem.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Bayesian graph edit distance


    Beteiligte:
    Myers, R. (Autor:in) / Wilson, R.C. (Autor:in) / Hancock, E.R. (Autor:in)


    Erscheinungsdatum :

    01.01.1999


    Format / Umfang :

    125849 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Bayesian Graph Edit Distance

    Myers, R. / Wilson, R. / Hancock, E. et al. | British Library Conference Proceedings | 1999


    Edit distance from graph spectra

    Robles-Kelly, / Hancock, | IEEE | 2003


    Edit Distance from Graph Spectra

    Robles-Kelly, A. / Hancock, E. / IEEE | British Library Conference Proceedings | 2003


    Travel-Activity Patterns Identification Using Graph Edit Distance

    Tran, Yen / Hashimoto, Naohisa / Ando, Takafumi et al. | IEEE | 2023


    Approximate graph edit distance computation by means of bipartite graph matching

    Riesen, K. / Bunke, H. | British Library Online Contents | 2009